Denklem Çözme (Lise Matematik)

(Okunma sayısı 43 defa)
CeeMoo

CeeMoo



Birinci Dereceden Bir Bilinmeyenli Denklemler



A. Tanım

a ve b gerçel (reel) sayılar ve a ¹ 0 olmak üzere, ax + b = 0 eşitliğine birinci dereceden bir bilinmeyenli denklem denir.



Bu denklemi sağlayan x değerlerine denklemin kökü, denklemin kökünün oluşturduğu kümeye denklemin çözüm kümesi denir.





B. Eşitliğin Özellikleri

1) a = b ise, a ± c = b ± c dir.



2) a = b ise, a . c = b . c dir.



3) a = b ise,



4) a = b ise, an = bn dir.



5) a = b ise,



6) (a = b ve b = c) ise, a = c dir.



7) (a = b ve c = d) ise, a ± c = b ± d



8) (a = b ve c = d) ise, a . c = b . d dir.



9) (a = b ve c = d) ise,



10)
a . b = 0 ise, (a = 0 veya b = 0) dır.



11)
a . b ¹ 0 ise, (a ¹ 0 ve b ¹ 0) dır.



12)
= 0 ise, (a = 0 ve b ¹ 0) dır.







C. ax + b = 0 Denkleminin Çözüm Kümesi


1) a ¹ 0 olmak üzere,

ax + b = 0 ise,....



2) (a = 0 ve b = 0) ise, ax + b = 0 denklemini bütün sayılar sağlar. Buna göre, reel (gerçel) sayılarda çözüm kümesi  dir.



3) (a = 0 ve b ¹ 0) ise, ax + b = 0 denklemini sağlayan hiçbir sayı yoktur. Yani, Ç = Æ dir.





D. Birinci Dereceden İki Bilinmeyenli Denklem Sistemi

a, b, c Î , a ¹ 0 ve b ¹ 0 olmak üzere, ax + by + c = 0 denklemine birinci dereceden iki bilinmeyenli denklem denir. Bu denklem düzlemde bir doğru belirtir. Doğru üzerindeki bütün noktaların oluşturduğu ikililer denklemin çözüm kümesidir.



Buna göre, ax + by + c = 0 denkleminin çözüm kümesi birçok ikiliden oluşur.



  olmak üzere,



ax + by + c = 0



  için sağlanıyorsa



a = b = c = 0 dır.



Birden fazla iki bilinmeyenli denklemden oluşan sisteme birinci dereceden iki bilinmeyenli denklem sistemi denir.



Çözüm Kümesinin Bulunması

Birinci dereceden iki bilinmeyenli denklem sistemlerinin çözüm kümesi; yok etme yöntemi, yerine koyma yöntemi, karşılaştırma yöntemi, grafik yöntemi, determinant yöntemi gibi yöntemlerden biri ile yapılır.

Biz burada üçünü vereceğiz.



a. Yok Etme Yöntemi: Değişkenlerden biri yok edilecek biçimde verilen denklem sistemi düzenlenir ve taraf tarafa toplanır.

Taraf tarafa toplandığında veya çıkarıldığında (ya da bir düzenlemeden sonra) değişkenlerden biri sadeleşiyorsa “Yok etme yöntemi” kolaylık sağlar.



b. Yerine Koyma Yöntemi:
Verilen denklemlerin birinden, değişkenlerden biri çekilip diğer denklemde yerine yazılarak sonuca gidilir.

Denklemlerin birinden, değişkenlerden biri kolayca çekilebiliyorsa, “Yerine koyma yöntemi” kolaylık sağlar.



c. Karşılaştırma Yöntemi: Verilen denklemlerin ikisinden de aynı değişken çekilir. Denklemlerin diğer tarafları karşılaştırılır (eşitlenir).

Her iki denklemden de aynı değişken kolayca çekilebiliyorsa, “Karşılaştırma yöntemi” kolaylık sağlar.



..........ax + by + c = 0

..........dx + ey + f = 0



denklem sistemini göz önüne alalım:

Bu iki denklemin her birinin düzlemde bir doğru belirttiği göz önüne alınırsa üç durum olduğu görülür.



Birinci durum:


 ise, bu iki doğru tek bir noktada kesişir.

Verilen denklem sisteminin çözüm kümesi bir tek noktadan oluşur.



İkinci durum:


 ise, bu iki doğru çakışıktır.

Doğru üzerindeki her nokta denklem sistemini sağlar.

Verilen denklem sisteminin çözüm kümesi sonsuz noktadan oluşur.



Üçüncü durum:


 ise, bu iki doğru paraleldir.

Denklem sistemini sağlayan hiçbir nokta bulunamaz.

Verilen denklem sisteminin çözüm kümesi boş kümedir.

 

Merhaba Ziyaretçi

*

Haberler

Lütfen sitemizde hakaret ve küfür içeren paylaşımlarda bulunmayınız.

  • Toplam İleti: 6590
  • Toplam Konu: 5844
  • Toplam Üye: 23
  • Son Üye: curkam
  • Bugün En Çok Çevrimiçi: 446

En son gönderilen iletileri göster
[Daha fazla istatistik]

Çevrimiçi Üyeler

  • 400 Ziyaretçi
  • 1 Üye
  • (34 Örümcek)

Son 1440 dakika içinde aktif olan üyeler: snrj, Yandex (29), Google (3), Baidu (2)

Bugün En Çok Çevrimiçi: 446
En Çok Çevrimiçi: 738 (03 Mar 2019 18:46)