Rassal değişken

(Okunma sayısı 87 defa)
CeeMoo

CeeMoo

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistikin temeli kurulmuştur.

Son birkaç yüzyılda olasılıkla ilgili matematiksel fikirler geliştirilirken rassal değişkenlerlerle ilişkili teori ve kullanım matematik kuramı biçimlerine konulmuştur. Rassal değişkenleri modern matematik görüşle tam olarak anlamak için, daha yakın zamanlarda matematikçiler tarafından geliştirilmiş olan ölçüm kuramı hakkında geniş bilginin kazanılması gerekmektedir. Rassal değişken kavramı, bu kuram içinde tüm özellikleri ile arka planda kalmakla beraber, kuramın içeriğinde önemli bir yeri bulunmaktadır. Bununla beraber, rassal değişkenler kavramının matematiksel teoride değişik ileri seviyelerde fazla teori gerektirmeyen çok daha az ileri matematiksel bilgisi ile de anlaşılması mümkündür. Böylece rassal değişkenler hakkında temel bilgileri anlamak için sadece set kuramı ve değişkenler hesabı bilinmesi yeterli olmaktadır.

Geniş bir tanımlama ile, bir rassal değişken, değerleri rassal olan ve bu değerler için bir olasılık dağılımı saptamak imkânı olan bir sayıdır. Daha matematiksel biçimde, bir rassal değişken bir örneklem uzayından dağişkenin mümkün değerlerinden oluşan ölçülebilir uzaya değişimi gösterir. Rassal değiskenlerin bu formel tanımlanması reel değerli sonuçlar veren deneyleri çok sıkı bir surette matematiksel [[ölçüm {matematik)|ölçüm kuramı]] çerçevesi içine sokmakta ve reel değerli rassal değişkenler için dağılım fonksiyonu kurulmasına imkân sağlamaktadır.

 

Örnekler

Hileli olmayan bir zar atılması ve bunun olası sonuçları olan { 1, 2, 3, 4, 5, 6 } sayıları gelmesi sürecini tanımlamak için bir rassal değişken kavramı kullanılabilir. Bu deneyi en belli şekilde matematiksel olarak temsil etmek bu seti örneklem uzayına koymakla yapılır; olasılık ölçümü tekdüze ölçüm ve fonksiyon da özdeşlik fonksiyonu olarak kabul edilir.

Bir madeni para havaya atma denemesine gelince mümkün olan sonuçlar uzayı (yazı veya tura için) Ω = { Y, T } olur. Bu uzaydaki rassal değişkene bir örnek

olur.

Reel değerli rassal değişkenler

 

Tipik olarak ölçülebilir uzay reel sayılardan oluşmuştur. Reel sayılar kümesinde olmayan karmaşık sayılardan oluşmazlar.

Bu halde, bir örneklem uzayı olsun. O zaman,

fonksiyonu bir reel değerli rassal değişken olması için

olması gerekir.

Rassal değişkenlerin dağılım fonksiyonları

 

Bir yığmalı dağılım fonksiyonunu belli bir rassal değişkeni ile birlikte olduğunu düşünmek bir değişkene bir değer tahsis etmenin bir genelleştirilmesidir. Eğer yığmalı dağılım fonksiyonu sağdan sürekli bir Heaviside basamak fonksiyonu ise, o halde rassal değişken bu sıçrama için 1 olasılık değerini alir. Genel olarak, yığmalı dağılım fonksiyonu değişkenin belirli değerinde ne olasılık göstereceğini tanımlar.

Eğer

(Ω,A,P)olasılık uzayında tanımlanmış bir rassal değişken olan

bilinmekte ise, şu şekilde soru sorulabilir:

"Xin değerinin 2 den büyük olması ne kadar olabilirliktedir?".Bunu aynı anlamda

" olayının olasılığı nedir?"olarak sorabiliriz veya matematiksel ifade ile kısaca P(X > 2) olarak yazabiliriz.

 

Bir reel değerli rassal değişken olan Xin çıktılarının bütün değerlerinin olasılıklarının hepsinin kaydı yapılırsa X için olasilik dağılımı ortaya çıkar. Olasılık dağılımı Xi tanımlamak için kullanılan belirli bir olasılık uzayını unutur ve sadece X çeşitli değerlerinin olasılığını kaydeder. Bu türlü olasılık dağılımı her zaman şu yığmalı dağılım fonksiyonu tarafından ele geçirilebilir:

ve bazan da ele geçirme bir olasılık yoğunluk fonksiyonu kullanılarak gerçekleştirilebilir. Ölçüm kuramında rassal degişken olan Xi Ω üzerindeki P ölçüsünü R üzerinde bir F ölçüsüne "ileri itmek" için kullanırız.

Teorinin altında bulunan Ω olasılık uzayı rassal değişkenlerin varoluşlarını garanti etmek için , bazan de onları inşa etmek için bir teknik gereçtir. Pratikte çok defa Ω uzayı tümüyle bir tarafa bırakılır. Doğrudan doğruya R üzerine reel doğrunun tümüne 1 ölçü değeri tahsis eden bir yeni ölçü koyulur. Yani rassal değişkenler yerine olasılık dağılımları doğrudan doğruya kullanılır.

Momentler

 

Bir rassal değişkenin olasılık dağılımı, çok kere pratikte anlanması ve uygulanması kolay olan küçük sayıda parametreler ile nitelendirilir. Örneğin, sadece "ortalama değer" olan λ değerini bilmek Poisson dağılımını bilmek için yeterlidir. Ortalama kavramı matematik teoride bir rassal değişkenin beklenen değeri olarak, yani E[X] olarak ifade edilir. Genellikle E[f(X)] ifadesi f(E[X]) ifadesine eşit değildir. "Ortalama değer" bilinince, bu ortalama değerin X tipik değerlerinden ne kadar fazla uzaklıkta olduğu sorusu hemen akla gelir ve bu soruya yanıt bu rassal değişkenin standart sapması ve varyansı ile bulunur.

Matematik kuramı içinde bu (genelleştirilmiş) momentler problemi olarak bilinmektedir: Bilinmekte olan bir sınıf rassal değişkenler olan X için, E[fi(X)] ifadesindeki beklenen değerler ile rassal değişken Xin dağılımını tam olarak nitelendiren bir {fi} fonksiyonlar koleksiyonu bulunması istenmektedir.

Rassal değişkenlerin fonksiyonları

 

Eğer X rassal değişkeni Ω üzerinde bulunursa ve f ölçülebilir fonksiyon RR ise, bu halde de Y = f(X) de Ω, üzerinde bir rassal değişken olacaktır. Buna neden ölçüculebilir bir fonksiyonun kompozisyonu da ölçüulebilir olmalıdır. Bizi bir olasılık uzayi olan (Ω, P) den (R, dFX)ye gitmemize izin veren yordam Y için dağılımı bulmak için de kullaniılabilir. Y için yığmalı dağılım fonksiyonu

olur.

Örnek 1

 

X reel değerli bir sürekli rassal değişken olsun ve Y = X2 olsun. O halde,

Eğer y

 

Merhaba Ziyaretçi

*

Haberler

Lütfen sitemizde hakaret ve küfür içeren paylaşımlarda bulunmayınız.

  • Toplam İleti: 6590
  • Toplam Konu: 5844
  • Toplam Üye: 23
  • Son Üye: curkam
  • Bugün En Çok Çevrimiçi: 469

En son gönderilen iletileri göster
[Daha fazla istatistik]

Çevrimiçi Üyeler

  • 372 Ziyaretçi
  • 0 Üye
  • (50 Örümcek)

Son 1440 dakika içinde aktif olan üyeler: Yandex (48), Google (2)

Bugün En Çok Çevrimiçi: 469
En Çok Çevrimiçi: 747 (07 Haz 2019 12:34)